
Mediation proportion

Mediation proportion

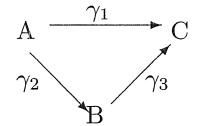
joint work with Susanne Ditlevsen (Biostat., Copenhagen), Ulla Christensen and Pernille Due (Social Medicine, Copenhagen), John Lynch (Epidemiology, Univ. of Michigan)

How much of the effect of A on C is mediated through B?

Simple regression analysis

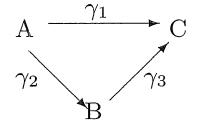
exposure
$$\begin{pmatrix} A \\ B \end{pmatrix}$$
 normal $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_2^2 & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_3^2 \end{pmatrix}$ response $\begin{pmatrix} C \end{pmatrix}$

Without B


Effect of A on C: regression $C = \beta A + \varepsilon$, $\beta = \sigma_{13}/\sigma_1^2$

With B

Effect of A on B: regression $B = \gamma_2 A + \varepsilon_1$, $\gamma_2 = \sigma_{12}/\sigma_1^2$

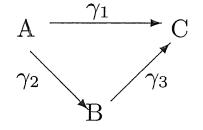

Effect of A and B on C:

regression
$$C = \gamma_1 A + \gamma_3 B + \varepsilon_2 = \gamma_1 A + \gamma_3 \gamma_2 A + \varepsilon$$

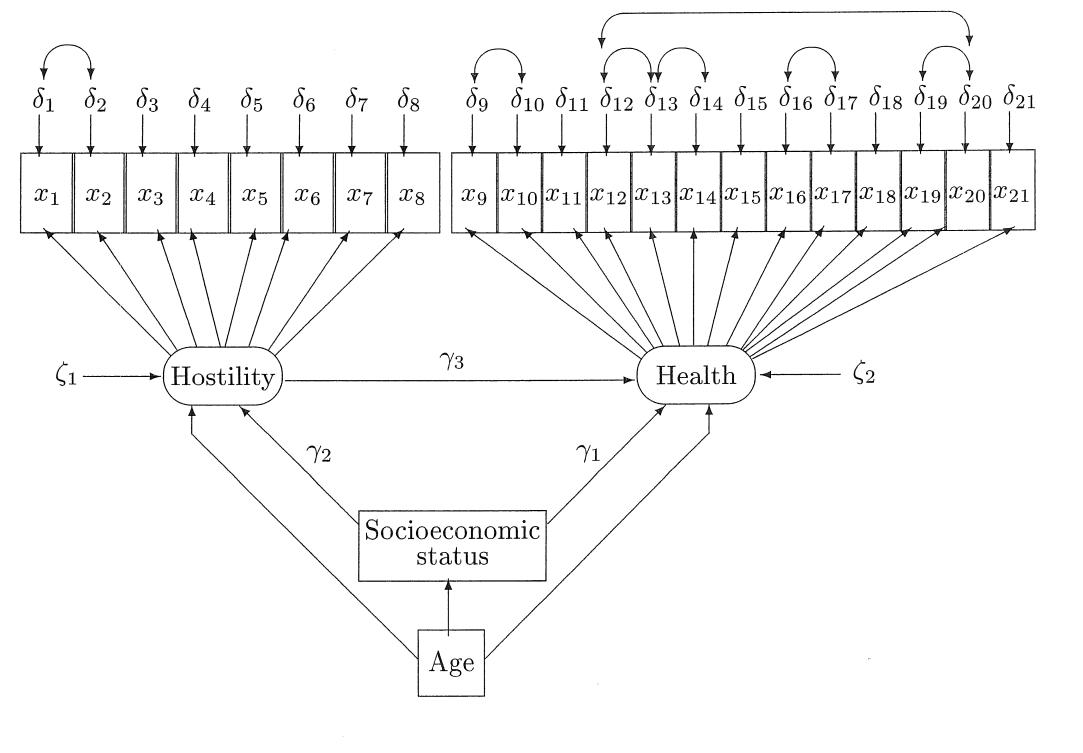
$$\gamma_1 + \gamma_3 \gamma_2 = \beta$$
direct + indirect = total

Mediation proportion

$$\gamma_1$$
 + $\gamma_3\gamma_2$ = β
direct + indirect = total


$$\frac{\text{indirect effect}}{\text{total effect}} = \frac{\gamma_2 \gamma_3}{\gamma_1 + \gamma_2 \gamma_3} = \frac{\gamma_2 \gamma_3}{\beta} = 1 - \frac{\gamma_1}{\beta}$$

Non-normal distribution: structural equations


Example. Effect of socioeconomic status on health mediated through hostility.

Data. Random sample of 40 and 50 years old Danes.

7588 (response proportion 69%) answered questionnaire

- A Socioeconomic status 6 categories
- B Hostility 8 items
- C Health 13 items re symptoms during last 4 weeks

Param	Estimate	Std. err.	Approx. 95% CI	<i>p</i> -value
γ_1	0.121	0.011	[0.099;0.143]	< 0.0001
γ_2	0.207	0.013	[0.182;0.232]	< 0.0001
γ_3	0.210	0.021	[0.169;0.251]	< 0.0001

Regression estimates for men

$$\frac{\text{Indirect effect}}{\text{Total effect}} = \frac{0.210 \cdot 0.207}{0.121 + 0.210 \cdot 0.207} = 0.264 \quad (0.203; 0.325)$$

Param	Estimate	Std. err.	Approx. 95% CI	<i>p</i> -value
γ_1	0.165	0.012	[0.141; 0.189]	< 0.0001
γ_2	0.193	0.013	[0.168; 0.218]	< 0.0001
γ_3	0.234	0.023	[0.189;0.279]	< 0.0001

Regression estimates for women

$$\frac{\text{Indirect effect}}{\text{Total effect}} = \frac{0.234 \cdot 0.193}{0.165 + 0.234 \cdot 0.193} = 0.215 \quad (0.166; 0.264)$$